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Insights from agent-based modelling to simulate
whale-watching tours

Influence of captains’ strategy on whale exposure
and excursion content
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Lamontagne, Samuel Turgeon, Robert Michaud, Cristiane C. A. Martins, Nadia

Ménard, Guy Cantin and Suzan Dionne

Introduction

Multi-agent models can bear several names
depending on the field they were initially devel-
oped in (e.g. agent-based model in social science,
individual-based model in ecology). Agent- and
individual-based models (ABMs and IBMs) are
becoming tools of choice to simulate complex
social–ecological systems (Gimblett, 2002; Janssen
& Ostrom, 2006; Monticino et al., 2007; Bennett &
McGinnis, 2008). The recent development of dedi-
cated programming platforms and libraries has also
contributed to the expansion of multi-agent models
coupled with geographic information systems
(GIS) (Railsback et al., 2006). Such models have
been applied in a wide variety of natural resource
management contexts where heterogeneous actors
interact, including rangeland management in arid
zones (Gross et al., 2006), management of water
use and access in river basins (Schlüter & Pahl-
Wostl, 2007), control of irrigation channels (van
Oel et al., 2010), agriculture management (Manson,
2005), and forest clearing for agriculture (Moreno
et al., 2007). ABMs have also been used to support
national parks and recreation areas’ managers
by simulating visitor movements to predict over-
crowded areas along vehicular routes and hiking

trails (Itami et al., 2003), or along riverside rest areas
and attraction sites for rafting trips on the Colorado
River (Roberts et al., 2002).

ABMs of social–ecological systems where nat-
ural resource management is at stake are fre-
quently used to explore outcomes of what-if sce-
narios of policy rules (Gimblett et al., 2002). Apart
from testing policy rules, such models involving
humans can also be used to explore the effects
of alternative behaviours on the status of the nat-
ural resource. In this study, we developed a spa-
tially explicit multi-agent model named 3MTSim
(Marine Mammal and Maritime Traffic Simulator)
to investigate whale-watching activities in the Saint-
Lawrence Estuary and the Saguenay River, Québec,
Canada (Parrott et al., 2011). Whale-watching activ-
ities in this area have increased dramatically since
the 1990s (Dionne, 2001), raising concerns about the
impact of intensive navigation on targeted whale
populations, some of which were, and still are,
of special concern (COSEWIC, 2005), threatened
(Demers et al., 2011), or endangered (Beauchamp
et al., 2009) under the Species at Risk Act (2002,
Canada). Public pressure on governments led to the
creation of the Saguenay–Saint-Lawrence Marine
Park (referred to as marine park later) in 1998
(Guénette & Alder, 2007) whose limits are shown in
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Figure 20.1 The study area encompassing the Saguenay–Saint-Lawrence Marine Park and the projected Saint-Lawrence

Estuary marine protected area.

Figure 20.1. The implementation of regulations on
marine activities followed in 2002 (Parks Canada,
2002), with law enforcement ensured by Parks
Canada wardens. In addition to a series of rules reg-
ulating observation activities (e.g. maximum obser-
vation duration), the regulations also fixed a cap
of 59 commercial permits for regular boats oper-
ating in the marine park (53 dedicated to whale-
watching) (Parks Canada, 2002). Whale-watching
activities in the marine park area rely on the rela-
tively predictable presence of several whale species,

five of which represent 98.5% of the total num-
ber of observations (Michaud et al., 2008). In 2007,
we estimated that approximately 13,000 commer-
cial excursions went to sea, 80% of which were ded-
icated to whale-watching within the marine park
(Chion et al., 2009). The projected Saint Lawrence
Estuary Marine Protected Area (MPA), proposed by
Fisheries and Oceans Canada, is expected to extend
the protection of marine ecosystems beyond the
marine park limits (Figure 20.1). As whale-watching
activities are significantly less dense and abundant
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in the MPA than in the marine park, we decided to
focus our study on excursions taking place in the
marine park only.

3MTSim combines an ABM of navigation activ-
ities with an IBM of whale movements into a
GIS-based representation of the geographic area.
An asset of 3MTSim is that it allows the collec-
tion of exhaustive data of phenomena difficult or
expensive to sample in the real system, such as
the total amount of time each individual whale
is exposed to observation boats. Major compo-
nents of local marine activities are considered in
3MTSim with a special focus on whale-watching
excursions. A great deal of effort was made to under-
stand whale-watching captains’ decision-making in
order to reproduce realistically their behaviour in
3MTSim. Whale-watching excursions’ data analy-
sis and investigation of captains’ decision-making
processes through cognitive interviews revealed
that they often favour sure observations of poten-
tially dramatic species (Chion, 2011, chapters 3
and 4). Captains achieve sure observations mainly
by exploiting the knowledge of current observa-
tions made by other whale-watching boats; a high
level of cooperation at sea being the fundamental
behavioural mechanism allowing the flow of infor-
mation via the radio VHF communication channel.
Potentially dramatic species are those well known for
their spectacular displays (e.g. humpback whales’
breaches or tail-slapping, fin whales hunting in large
groups) or having notable characteristics (e.g. the
blue whale is the largest animal ever on Earth; adult
belugas are all white). Similarly, a vast collection of
multi-platform observation data (enumerated later)
was used to simulate the movements and distribu-
tion of whale species.

In this chapter, we investigate the effect of dif-
ferent captains’ decision-making strategies on the
exposure of targeted whales to observation vessels.
Our investigation is aimed at demonstrating the fea-
sibility of using an ABM for advisory purposes. After
an overview of 3MTSim, we use the model to explore
how alternative decision-making strategies, which
could be suggested to whale-watching captains via a
code of conduct or training sessions, might decrease

whales’ exposure to boats. We then discuss some
lessons and insights that can be learned about
the dynamics of whale-watching excursions using
multi-agent modelling.

Overview of 3MTSim

3MTSim was developed as a decision-support tool
for MPA managers. It integrates features dedicated
to test the potential effects of alternative zoning and
regulation plans (e.g. introducing speed limits, alter-
ing shipping routes, adding restricted access zones)
on the patterns of traffic in and around the marine
park and thus on the characteristics of whale–vessel
encounters (e.g. rate, location). A description of the
model and its functionalities is provided in Parrott
et al. (2011).

The model combines a grid-based spatial envi-
ronment (GIS) with an individual-based model
of whale movements and an agent-based model
of boats. During simulation runs, the movement of
each individual whale and each boat is determined
by algorithms and rules calibrated to reproduce
observed patterns of behaviours (Grimm et al.,
2005). Simulations are run for short periods of time,
based on realistic environmental conditions and
known scenarios of whale abundances and patterns
of habitat selection. The model time step currently
used for simulations is one minute.

Spatial environment

The spatial environment of 3MTSim is represented
by grid data (i.e. rasters) stored in an embedded GIS.
The bathymetry is considered in the displacement
and diving routines of whales, as well as for naviga-
tion. The state of the tide is modelled according to
a simple daily cycle that selects the tide condition
(flood, high, ebb and low tide) according to the date
and time of day. While weather conditions are not
explicitly modelled, visibility extent is represented
by a single parameter for the whole area. This value
remains constant for the duration of a simulation,
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mainly affecting whale-watching captains’ ability to
locate whales in their vicinity.

Whale individuals

The IBM of whale movements is described in
detail in Lamontagne (2009). It includes the five
most common species in the estuary: beluga
(Delphinapterus leucas), minke (Balaenoptera acu-
torostrata), fin (Balaenoptera physalus), humpback
(Megaptera novaeangliae) and blue whales (Bal-
aenoptera musculus). Insufficient data were avail-
able on whales’ food sources and on individuals’
activity budgets, preventing any attempt to devise a
behavioural model. Instead, whale movement pat-
terns were extracted from:
� tracking VHF data: 80 tracks for more than

380 hours, for beluga (Lemieux Lefebvre, 2009), fin
and blue whales (Giard & Michaud, 1997; Michaud
& Giard, 1997, 1998); and

� land-based theodolite tracks of the four rorqual
species: 140 focal follows with �100 hours of
tracking of individuals followed for more than
30 min (C.C.A. Martins, unpublished data).

Spatial distribution and aggregation patterns were
derived from:
� sightings made from research vessels: �550

baleen whales sightings from transect surveys
(Group for Research and Education on Marine
Mammals (GREMM), 2007); and

� sightings made from whale-watching vessels:
32,000 marine mammal sightings from more
than 2100 sampled whale-watching excursions
(Michaud et al., 1997, 2008).

The model combines a simple diving routine with
a displacement algorithm to determine each indi-
vidual whale’s depth, direction and speed at each
model time step (i.e. 1 min). Diving and sur-
face sequence durations are randomly selected
from an empirically derived Weibull distribu-
tion computed for each species from land-based
tracking data (Lamontagne, 2009). The diving
routine uses a simple deterministic function to

calculate the amount of remaining oxygen as a
function of the whale’s depth and diving time, thus
forcing the whale to surface regularly for breath-
ing. Several displacement algorithms were imple-
mented and tested, starting from a simple random
walk and increasing in complexity to include res-
idence indexes (Turchin, 1998) and social interac-
tion between whales (Couzin et al., 2005). The ability
of each algorithm to successfully match the (often
conflicting) patterns for each species was assessed.
The MMNB algorithm (minimization of the mean
normalized bias), a modification of the correlated
random walk (Turchin, 1998), proved the most suc-
cessful at reproducing the desired patterns, and
is currently implemented in the model. For each
species, MMNB randomly selects an individual’s
speed and move duration from the empirical distri-
bution and then adjusts the turning angle to reduce
the normalized mean difference between the real
and simulated group size (animal density within a
2 km radius), turning angle and spatial distribution
patterns (Lamontagne, 2009).

Whale-watching boat captain agents

Whale-watching excursions are challenging to
model. Their dynamics, driven by captains’ deci-
sions, is highly dependent on several factors, such
as whales’ spatiotemporal distribution, species’
abundance, and contextual factors (e.g. regula-
tions, current observations made by concurrent
companies, companies’ guidelines and directions).
These boat captains are goal-oriented and have
to find a way to achieve their goal in a dynamic
environment. Interviews with boat captains and
marine park wardens conducted after excursions
at sea, as well as VHF radio monitoring, revealed a
number of attributes of their decision-making, that
were included in the model. In particular, whale-
watching boat captains: (1) take advantage of infor-
mation on the most recent observations to explore
space when no other information is available;
(2) share information about whale locations; (3)
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Figure 20.2 Sequence of actions (from top to bottom) that each captain agent goes through at each time step during the

simulation.

give priority to more dramatic species such as the
humpback whale; (4) try to adjust the content of
their excursion according to that of their direct
competitors; and (5) must respect navigational
limits related to currents and bathymetry. In the
model, at each time step the virtual captain agents
follow a series of steps from information acquisition
to movement execution (Figure 20.2).

A whale-watching captain’s main objective is
to observe whales during an excursion (although
some also have subobjectives related to sightsee-
ing, for example). In the model, excursions leave
port according to planned schedules. Captains nav-
igate using a path-planning algorithm to select
the shortest path to their destination. Captains
choose which whale to observe using a cognitive

heuristic decision-making module (Chion et al.,
2011) according to their preferences and con-
straints. The captains must make use of existing
information (either from current data on whale
locations if available, or retrieving from the mem-
ory of previous excursions’ observations) to select
where to navigate their excursion to observe whales.
This type of decision is quick, based on limited
information, with no optimal universal solution,
and is repeated several times during an excursion.
We assume, therefore, that the captains are operat-
ing in a context of bounded rationality, where they
will select what appears to be the best choice given
currently available information and the contextual
setting both in time (e.g. what species they have
already observed during the excursion will affect
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their choice of the next pod to target) and in space.
The validation of the whale-watching vessel captain
model is described in further detail in Chion et al.
(2011).

Other whale-watching captains’ cognitive and
sensory capabilities are implemented within the
model. Past observations are aggregated in a
collective spatial memory according to a simple
clustering algorithm that groups those past obser-
vations in clusters where the maximum pairwise
distance does not exceed the visibility extent. This
approach was chosen to represent the way cap-
tains aggregate past unique observations in broader
regions where the action took place, rather than
in precise locations where each given observation
occurred. The distance of whale detection by a
captain’s visual module is species-dependent. For
each species, the detection distance was calibrated
using the knowledge of observers working at count-
ing whales on the Saint-Lawrence during sea-based
transects.

Methods

Rules considered by whale-watching captains
to choose a whale to observe

Our investigation of whale-watching captains’
decision-making revealed several notable charac-
teristics and mechanisms which were subsequently
implemented within the model (Figure 20.2). The
following decision rules were elicited from field
work mainly consisting of (1) seven semi-structured
interviews (�10 hours) conducted with whale-
watching captains after an excursion, (2) 15 hours of
VHF radio monitoring, and (3) observations made
during 30 excursions onboard all boats and ports
in the marine park area. Extracted decision rules
serve as the reference model for whale-watching
captains’ decision-making about which pod to tar-
get for observation. Within the sequence of actions
detailed in Figure 20.2, these rules intervene at the
step ‘update decision’, when the goal is ‘observing
whales’ and a new pod of whales has to be targeted

among a set of candidate animals. Given a set of
candidate whales, the captain agent jumps to the
next rule until only one whale remains in the list.
Rules are ranked as follows.
1. Captains try to find species that are not currently

observed by any captain at sea. If such a species
appears opportunistically in their surroundings,
the captain will target it. This will give him/her
an edge over the competition.

2. Captains favour species not already observed in
their own excursion that have been observed in
other excursions.

3. Captains prioritize the whales belonging to the
overall top-ranking species in their decision
(i.e. humpback, fin and blue whales). In fact,
species’ attractiveness is not the same for all
species. When present in the area, data from
sampled excursions show that humpback whales
are responsible for the largest aggregations of
boats followed by the fin, blue, minke and beluga
whales (all pairwise differences statistically sig-
nificant). Several characteristics have an impact
on species’ attractiveness, such as their poten-
tial spectacular displays, ease of observation (no
fleeing behaviour), predictability of individual
distribution, core habitat areas (e.g. proximity
from departure ports), abundance, and species-
specific regulations.

4. Captains prefer whales that are about to be lost
from the pool of discovered ones (i.e. no boat
observing them anymore). This is all the more
true for individuals from species standing high
in the preference ranking such as humpback
whales.

5. The next criterion is the preference for whales
with the lowest number of boats in their sur-
roundings. Some captains, often those with
more experience, give a higher priority to non-
crowded sites.

6. Captains favour observations allowing subse-
quent observations in the area. This ability to
anticipate and build an excursion in advance
and adjust it as a function of upcoming infor-
mation is expected to be more prevalent with
experienced captains.
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7. In case of a tie between candidate whales,
captains will break the tie by choosing the clos-
est whale.

We followed a naturalistic decision-making app-
roach to investigate captains’ decisions in action
(Klein et al., 1989; Klein, 2008) and modelled it fol-
lowing the bounded rationality framework (Simon,
1957; Gigerenzer & Selten, 2001). Being aware that
all captains neither have the same experience nor
the same values, using a single model to represent
all captains’ decision processes is a current limita-
tion of the model. However, the validation process
proved that this approach allowed the faithful repro-
duction of some key individual (total length, activity
budget and contribution of species in observations)
and collective (core areas of activity and boat aggre-
gations) patterns of excursions (Chion et al., 2011).
This suggests that from the collective perspective,
which is of particular interest, individual differ-
ences have a less critical influence on the global
dynamics than individual similarities (e.g. overall
preference ranking for given species) and shared
collective mechanisms (e.g. cooperation via com-
munication, prevalence of knowledge exploitation
over space exploration).

The rules described above were implemented
as cues within the take-the-best heuristic structure
(Gigerenzer & Goldstein, 1996) that has proved to
best reproduce excursion patterns (Chion et al.,
2011) among several cognitive heuristics taken from
the bounded rationality literature (Gigerenzer & Sel-
ten, 2001). The prevalence of a non-compensatory
heuristic such as take-the-best over compensatory
ones (e.g. tallying) supports the fact that whales’
characteristics do not have the same importance in
captains’ decisions.

Alternative decision-making strategies

To study how the decision-making process of
captains can influence the dynamics of whale-
watching excursions and ultimately affect the global
dynamics of the system, we implemented two
alternative decision-making strategies in 3MTSim

that virtual captains follow when deciding which
whale to observe. Our objective was to foresee
how such alternative behaviours could affect both
whales’ exposure and excursions’ dynamics and
content. This type of application could lead to
a series of recommendations passed on to cap-
tains during seasonal training sessions. The simu-
lations run with each alternative decision-making
model (DMM) aimed at demonstrating the feasi-
bility of such a utilization of ABM for advisory
purposes.

We present hereafter the two simple alternative
DMMs that were implemented and tested within
3MTSim. Rules contained within these two alter-
native models were implemented within the take-
the-best heuristic structure. The alternatives were
expected to mitigate whales’ exposure without sig-
nificantly affecting observation activities (e.g. time
spent in observation).

Preference for less-crowded observation
sites (DMM-1)

The idea of this DMM is to favour whales with fewer
boats in observation. Taking into account this cri-
terion in the process of selecting whales to observe
is expected to decrease the aggregation of boats
on observation sites, which is a goal pursued by
the marine park managers regarding the manage-
ment of whale-watching activities. Captains using
this decision strategy will apply decision rules in the
following order.
1. Captains try to find species that are not currently

observed by any captain at sea. If such a species
is visible in their surroundings, it will be targeted.

2. Captains favour species not already observed in
their own excursion.

3. Captains will pick the observation site with the
fewest boats on it, with a coordination mech-
anism allowing captains to account for others’
intentions (i.e. captains heading to observe a
whale but not currently observing it).

4. In case of a tie, captains will choose the closest
site regardless of species.
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No preference ranking of whale species
(DMM-2)

This DMM gives the same weight (i.e. importance)
to all species in captains’ selection process of which
pod of whales to target. The idea to test this
DMM comes from an issue noticed repeatedly in
the past, when some whales belonging to scarce
species attract numerous boats in their vicinity, via a
domino effect. Captains using this decision-making
module will apply the following rules.
1. Captains try to find species that are not currently

observed by any captain at sea. If such a species
appears in their surroundings, it will be targeted.

2. Captains favour species not already observed in
their own excursion.

3. Captains will not ground their decision based on
a species preference ranking.

4. In case of a tie, captains will pick the closest
whale between remaining candidates.

Design of experiment and
simulation parameters

For the reference model and both alternative DMMs
described above, we ran 10 replications of a one-
week simulation. We fixed the number of runs to 10
by monitoring the inter-run variability.

The data from the first day of each simulation
(transient state) were systematically discarded to
keep only the model’s steady state. The visibility
parameter was set to 4 km for all simulations. The
period of the year simulated is the peak tourist
season (between mid-July and mid-August); this
is the most critical time of the year in terms of
the number of boats at sea. Excursion schedules
and zodiac departures reach a peak at this time
of the year in response to the maximum tourism
demand.

All simulations were run with the same whale
species’ abundance and spatial distribution settings
(Table 20.1). Except for belugas, abundances were
selected to reflect the approximate proportion of
each species compared to the others, as observed

Table 20.1 Whale species’ setting used for

simulations.

Species Abundance

Years of spatial

distribution data used

Minke 40 2007

Fin 20 2007

Blue 3 2007

Humpback 3 2007

Beluga 100 1994–2007

during recent seasons. For belugas, because they
are often excluded from observation activities due
to the minimum observation distance restriction
(400 m), we lowered their number (from �1000 in
the real system to 100) to speed up simulations.

Output variables observed

In order to assess the impact of a given DMM strat-
egy on the system, we observed several variables
returned by the model. We distinguish variables
characterizing the impact on whales’ exposure from
those impacting excursions’ dynamics.

Variables characterizing whales’ exposure to
whale-watching boats

We chose four variables to characterize whale expo-
sure to observation boats. We made the distinction
between individuals, species and overall exposure.
� Exposure of individual whales.
� Percentage of individual whales observed. This

variable provides insight on the proportion of
individual whales that have been exposed to
observation activities.

� Duration of continuous sequences of observa-
tion. This variable allows monitoring the dura-
tion of the continuous sequences of observation
that animals are subject to. For instance, if two
boats observe the same whale during 30 min
successively (the first boat leaving when the
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second arrives), the duration of the continuous
observation sequence will be 60 min.

� Exposure of species.
� Species’ contribution to observation activities. This

variable tells us the contribution of each species
to the budget of all whale-watching activities.

� Overall exposure of whales present in the area.
� Time spent in observation activity. This variable

allows computing the total time whale-watching
boats have been observing whales.

We are aware that some of these variables should
be regarded cautiously as the level of knowledge
introduced in the model may affect their accuracy.
For instance, the percentage of individuals observed
partially depends on the spatial location of individ-
ual whales; however, in reality some specific individ-
uals may display some site fidelity, which is not fully
known or modelled within 3MTSim.

Variables characterizing excursions’ dynamics

Modifying a captain’s strategy affects excursions’
dynamics. We monitor changes by recording and
analysing the following variables.
� Success of the excursions. This variable informs us

about the percentage of excursions that made at
least one observation during the outing.

� Time spent in observation activity (cf. description
above).

� Proportion of time boats are alone with the tar-
geted pod. This variable is an indicator of the qual-
ity of observations. Because the large number of
boats at sea is one of the top-most sources of
concern about whales’ protection and the most
negative element experienced by whale-watching
tourists during their excursion (see Giroul et al.,
2000: 53–54), it can be reasonably inferred that
decreasing boat concentrations would contribute
to the enhancement of the visitors’ experience.

� Boat aggregations around observed pods of whales.
This is a critical variable for managers who wish
to decrease boat aggregations at sea, known to
modify whale behaviour (Michaud & Giard, 1997,
1998).

Table 20.2 Increase in the total number of individual

whales observed each simulated day for both

alternative DMM in comparison to the reference model.

DMM-1 (compared to

reference)

DMM-2 (compared to

reference)

+15% +1.5%

More variables could be added to this analysis
framework. However, the set of variables presented
above are intended to give an insight into 3MTSim’s
capability to monitor effects induced by captains’
changes of behaviour.

Results and discussion

We now present and discuss the simulation results
for both alternative models (DMM-1 and DMM-2)
and compare them to the reference model’s outputs
characterizing the current situation at sea.

Whale exposure

Simulations revealed that DMM-1 and DMM-2 both
increase the total number of individual whales
observed during a day compared to the current sit-
uation (modelled by the reference DMM). The strat-
egy where captains favour observation sites with
fewer boats leads to a 15% increase in the number
of individuals observed, whereas the strategy where
no preference ranking of species exists leads to a
1.5% increase in the number of observed individu-
als (Table 20.2). These relative increases are signifi-
cant with both p-values � 0.01 (Wilcoxon rank sum
test).

We compared the distributions of the duration
of observation sequences produced by DMM-1
and DMM-2 (cf. Figure 20.3). Neither DMM-1 nor
DMM-2 affected this metric significantly com-
pared to the reference model (Wilcoxon rank sum
test). This is a consistent result because the rule
that controls the decision to leave the observation
site remained the same for all tested models (a
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Figure 20.3 Boxplots of observation sequence durations for the three tested DMMs. No statistical difference was noticed

between the distributions.

function of the number of the targeted whale’s
surfaces observed, the maximum time allowed
by the marine park regulations for observing the
same pod, the presence of other whales observ-
able in the vicinity, and the remaining time in the
excursion).

Several ways could be envisioned to reduce the
duration of observation sequences in the real sys-
tem: giving incentives to explore space to search
for new whales instead of taking advantage of dis-
covered whales; reducing the maximum authorized
time in observation of the same pod (currently
60 min); or giving incentives to diversify activi-
ties at sea leading to more time spent discovering
landscape features (e.g. lighthouses, sand dunes).
Such strategies could be tested in the model to
predict the effects on the duration of observation
sequences.

Table 20.3 shows the repartition of observation
effort on the four rorqual species. Both DMM-1
and DMM-2 led to a significant reduction of the
proportion of time devoted to humpback whales
observation. Attractiveness of this species is partic-
ularly high in the area for several reasons includ-
ing its occasional spectacular behaviours, stability

Table 20.3 Contribution of each species to overall

observation activities (%).

Minke

whale

Fin

whale

Blue

whale

Humpback

whale

Reference model 32.8 31.1 4.0 32.1

DMM-1 44.3 35.9 3.9 15.9

DMM-2 34.4 37.7 8.2 19.7

of individual locations, and core habitat located
in the vicinity of the busiest ports of excursion
departure. In contrast, despite having the same
abundance across simulation runs (3), blue whales
always account for a smaller part of observations,
especially because their home-range is located
more downstream, farther from the most active
homeports.

Excursion dynamics

The percentage of unsuccessful excursions (i.e. no
whale observation) is similar for all tested models at
approximately 3%. Again, this is consistent because
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Table 20.4 Average and standard

deviation of proportion of time spent in

observation during excursions (%).

Reference model DMM-1 DMM-2

49.4 ± 1.6 54.1 ± 0.8 53.0 ± 2.1

Table 20.5 Proportion of the total observation time an

excursion is alone (1) or with another boat (2)

observing a pod (%).

Reference

model DMM-1 DMM-2

1. Alone with the pod 26.3 32.2 25.7

2. Two boats observing

the same pod

22.8 27.7 23.6

Sum (1+2) 49.1 59.9 49.3

for all simulations captains favour (when possi-
ble) the exploitation of discovered whales rather
than the more risky exploration of space. Conse-
quently the success rate is not affected. Conversely,
we found a slight change in the total amount of
observation activities. Both DMM-1 and DMM-2
strategies lead to more observations than the refer-
ence model (Table 20.4).

The increase in time spent in observation is
due to the fact that captains promote opportunis-
tic observations for both DMM-1 and DMM-2. In
the case of DMM-1, this is due to the fact that
a whale surfacing opportunistically in the vicin-
ity can be the best choice because there is no
boat observing it. In the case of DMM-2, as the
species is no longer a criterion for whale selec-
tion, whales surfacing in the vicinity of a boat will
have more chance to be selected for observation.
Observing close whales opportunistically reduces
the travel time needed to reach a more distant
site, thus explaining the increase in observation
activities.

Reducing boat aggregations around pods of
whales is positive both for whales and visitors’ expe-
rience. Table 20.5 shows the proportion of time one
or two boats are simultaneously observing the same

pod. As expected, using the DMM-1 strategy, cap-
tains significantly increase by �11% the propor-
tion of time they spend alone or with only another
boat observing a pod when compared to the refer-
ence model. In contrast, DMM-2 does not signifi-
cantly affect those variables. Let us point out that
these figures take into account all excursions in a
day, including early and late excursions where most
observations occur alone as few boats are at sea at
these times (compared to busier midday schedules).

Figure 20.4 shows the boxplots of the boat num-
ber distributions on observation sites. Only DMM-1
significantly reduces boat densities around whales,
including median and maxima (Wilcoxon rank sum
test).

Conclusion

Our goal was to provide insights on the use of multi-
agent modelling to better understand the nature
of interactions between whale-watching excursions
and whales. 3MTSim is a spatially explicit multi-
agent model representing whale movements and
navigation activities within the Saint-Lawrence
Estuary, Québec, Canada. This model was primar-
ily developed to test alternative navigation-related
management scenarios, including whale-watching
activities. Because the whale-watching captains’
decision process was modelled in detail, 3MTSim
can also be used to predict outcomes from changes
in captains’ strategies to locate and observe whales,
which was presented here.

Currently, whale-watching captains mostly
ground their decisions of which whale to observe
based on species, proximity, and competitor excur-
sions’ content. We demonstrated that prioritizing
other criteria such as low aggregations of boats
could help to decrease the overall density of boats
in the vicinity of whales, without affecting impor-
tant excursions’ performance (e.g. time spent in
observation). Additional decision strategies, not
simulated, could also improve the situation at sea.
For instance, captains could engage in more space
exploration (as opposed to the currently widespread
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Figure 20.4 Boxplots representing the number of boats on observation sites for each tested DMM.

exploitation of discovered whales) or could sys-
tematically present some landscape or historical
features (e.g. lighthouses, sand dunes) as part of
their excursion instead of focusing exclusively on
whale observation.

By simulating alternative decision strategies that
could be followed by whale-watching captains, it
is possible to devise a set of recommendations
that marine park managers could communicate to
captains during training sessions. As a decision-
support tool, 3MTSim has the advantage of being
able to illustrate the whole picture of the collec-
tive impact of navigation, including whale-watching
activities, on whales. An appreciation of their col-
lective impact on targeted whales was particularly
absent from captains’ discourses during interviews,
3MTSim could therefore help in raising further
awareness about this issue. As new knowledge about
the system’s dynamics will become available, it will
be possible to integrate it in 3MTSim. Expected
model improvements include the implementation
of noise emission by boats along with 3D propaga-
tion in the area, whales’ reaction to the presence of
boats, and captains’ individual differences (e.g. val-
ues, preferences). This way, additional model output

variables could be accounted for to achieve a more
complete impact analysis (e.g. spatial variations
of boat–whale co-occurrences, whales’ cumulative
exposure to noise sources).
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